Safe Routes on a Street Graph with Minimum Power Transmission Range

Manuel Abellanas∗†, Antonio L. Bajuelos‡§, Inês Matos‡¶

Abstract

Let S be a set of n points in the plane (antennas). An object is said to be 2-covered with range r if every point of such object is interior to at least two discs (not necessarily the same) centered at S of radius r. The following problem is considered in this paper: given a set S of n antennas and a planar geometric graph $G = (V, E)$, calculate the minimum power transmission range of S so that a 2-covered path between two given nodes of G exists. Is is described an algorithm to solve this problem in two phases. In the first phase (preprocessing phase), graph G is transformed into a weighted graph G_w (using the second order Voronoi diagram of S) and then a minimum spanning tree of G_w, T_w, is found. This phase takes $O(|E| \times n)$, $|E| > \log n$, time. In the second phase (solution phase), the minimum power transmission range of S and a 2-covered path are calculated using T_w. Regarding time complexity, this second phase is linear on the number of edges of T_w.

1 Introduction and Related Works

Let S be a set of n points in the plane that represent the location of n antennas (or any device able to send or receive some sort of signal). Suppose all antennas have the same power transmission range $r \in \mathbb{R}^+$ that is variable. The distance between a point q and a set S of points is the shortest distance between q and every point of S. The minimum range of the antennas so that S covers q is exactly the distance between q and S. A point covered by two or more antennas is said to be 2-covered by S. The concept of 2-covering is useful to assure that the points remain covered when one antenna fails. Let D be the set of discs centered at the antennas of S of radius r. Each nonempty intersection between two discs of D is called a lens. It is easy to see that 2-covered regions result from the union of these lenses. Therefore, a point is 2-covered by S if it belongs to a lens (see Figure 1). The antennas’ covering range, r, depends directly on their transmission power which, on its turn, is responsible for the costs associated to the service they provide. For that reason, it is important to minimize the value of r.

Consider now a connected geometric planar graph G together with set S. Suppose that the edges of G represent streets/roads and its nodes represent reachable locations using those streets (see Figure 1). A path on G using only the edges that are 2-covered by S is called a 2-covered path or a 2-path. Given two nodes n_i and n_j of G, our main goal is to compute the minimum power transmission range so that there is a 2-path on G connecting n_i and n_j.

Related Works: in [1] the authors study a problem equivalent to the one here proposed and other multi-parametric optimization problems for 1-covering. In [2], a subset of a given set of discs with variable radii whose costs depend on their radii is computed, as well as the same subset but with fixed costs to cover a given line segment at minimum cost.

This paper is structured as follows. The next section is divided in two subsections. In the first subsection, graph G is preprocessed and converted into

∗Facultad de Informática, Universidad Politécnica de Madrid, mabellanas@fi.upm.es
†Co-supported by Project Consolider Ingenio 2010 i-MATH C3-0159 and MICINN Project MTM2008-05043
‡Departamento de Matemática & CEC, Universidade de Aveiro, {leslie.ipmatos}@ua.pt
§Supported by CEC through Programa POCTI, FCT, co-financed by EC fund FEDER
¶Supported by a FCT fellowship, grant SFRH/BD/28652/2006 and by CEC through Programa POCTI, FCT, co-financed by EC fund FEDER
a weighted graph G_w. In this subsection, a minimum spanning tree (MST) of G_w is also found. Such MST is later used in the second subsection to calculate the minimum power transmission range of S to guarantee the existence of a 2-path between two nodes of G. Finally, conclusions and some remarks are presented in Section 3.

2 Minimum 2-Covering of a Path between two nodes of a Street Graph

Let S be a set of n antennas. The second order Voronoi diagram of S, $VD_2(S)$, divides the plane into several regions by grouping points that share the same two closest antennas [3]. This proximity structure is naturally related to this problem since a point is 2-covered if it is interior to the lens defined by its two closest antennas. For this reason, a point q is 2-covered if the power transmission range of the two closest antennas to q is enough to reach q. The minimum power transmission range of S that 2-covers an object x is denoted by $MR_S(x)$.

Let $G = (N, E)$ be a connected geometric planar graph whose nodes represent locations and its edges represent roads/streets that connect such locations. Without loss of generality, it is assumed that $|E| > \log n$. Given two nodes n_i and n_j of G, the smallest range of S which ensures the existence of a 2-path between n_i and n_j on G is denoted by $MR_{G}(n_i, n_j)$.

To simplify the notation, it can also be denoted by $MR_S(n_i, n_j)$ if G is clear from the context.

2.1 First Phase: Preprocess

![Figure 2: The minimum power transmission range r of S to 2-cover $e_1\overrightarrow{e_2}$ is $r = d(e, s_3) = d(e, s_4)$. $VD_2(S)$ is shown in a dashed trace.](image)

Given a line segment e, $MR_S(e)$ is calculated using the intersection points between e and $VD_2(S)$, $I_e = \{e\} \cap VD_2(S)$. It is easy to see that the minimum power transmission range needed to 2-cover every point of I_e and the extreme points of e is $MR_S(e)$ (see Figure 2).

The procedure explained in this subsection acts as a preprocess that transforms graph G into weighted graph G_w. To make this transformation, $MR_S(e)$ is assigned as the weight of each edge e of G (see Figure 3).

Proposition 1 Let $G = (N, E)$ be a graph and S a set of n antennas. The $MR_S(e)$ for every edge $e \in E$ can be calculated in $O(|E| \times n)$ time.

Proof. Computing $VD_2(S)$ takes $O(n \log n)$ since there are n antennas [6]. Then using $VD_2(S)$, it is possible to find the set $I_e = \{e\} \cap VD_2(S)$ for every edge $e \in E$ in $O(n \log n + |E| \times n)$ time. Next there is the need to add the extreme points of e to the set I_e. For each intersection point $p \in I_e$, $MR_S(p)$ is calculated in constant time using $VD_2(S)$ as it is the distance between p and its second closest antenna. Therefore, calculating $MR_S(e) = \max\{MR_S(p), \forall p \in I_e\}$ is a lin-

![Figure 3: Set S of eleven antennas represented by dots. $VD_2(S)$ is shown in a dashed trace. (a) Graph G whose nodes are represented by squares. (b) The graph’s edge connecting n_1 and n_7 has weight 38 which is the minimum power transmission range of S to 2-cover such edge.](image)
ear procedure for each edge e. As it is supposed that $|E| > \log n$, $MR_S(e)$ for every edge $e \in E$ can be computed in $O(|E| \times n)$ time. □

Let us remark that a minimum spanning tree of G_w, T_w, can be found in linear time using an algorithm by Matsui [4] since G_w is a planar graph. As it is shown in the next subsection, T_w eases the calculations since it stores important information concerning the antennas’ arrangement in relation to G_w. To summarize, the algorithm can be described as follows.

Algorithm: Preprocessing Phase

In: Set S of n antennas and a street graph G

Out: Graph G_w and T_w, a MST of G_w

1. Compute $VD_2(S)$, the Second Order Voronoi Diagram of S.
2. Convert G into weighted graph G_w:
 For every $e \in G$ do
 (a) Calculate $MR_S(e)$
 (b) $w(e) \leftarrow MR_S(e)$
3. Find T_w, a MST of G_w.

The next result is a direct consequence of Proposition 1.

Theorem 2 Given a set S of n antennas and graph $G = (N, E)$, computing a weighted graph G_w and a MST of G_w can be done in $O(|E| \times n)$ time.

2.2 Second Phase: Solution

Given two nodes n_i and n_j of G_w, the algorithm in this subsection shows how to calculate $MR_{S,G_w}(n_i, n_j)$ and how to find a 2-covered path on G_w connecting n_i and n_j.

Let P be a 2-covered path between two nodes on G_w. It is easy to see that the minimum power transmission range that ensures the existence of P is given by the weight of the heaviest edge of P. The next property shows that it is only necessary to consider the edges of a MST of G_w to find a 2-path between two given nodes of G_w.

Proposition 3 Let G_w be an edge-weighted connected graph. For any path P on G_w, let us consider the weight of P as the weight of its heaviest edge. Then, for every pair of nodes of G_w, the path connecting them on a MST of G_w is a minimum weight path between such pair.

Proof. Let G_w be an edge-weighted connected graph and T_w a minimum spanning tree (MST) of G_w. Suppose that P is the only path on T_w connecting nodes n_i and n_j and e is its heaviest edge. Consequently, P has weight $w(e)$. Now suppose that path P^* on G_w is a minimum weight path connecting n_i and n_j. Its weight is given by e^*, its heaviest edge, and so $w(e^*) < w(e)$. Since P is heavier than P^*, the edge e is not part of P^*. If paths P and P^* are united, then a cycle is created. That cycle contains e which clearly is its heaviest edge. But this contradicts the hypothesis that e is an edge of a MST of G_w. Therefore, a minimum weight path between two nodes of G_w is the path on T_w connecting those nodes. □

![Figure 4](image-url)

Figure 4: (a) A MST of a weighted graph is shown in a solid trace. (b) The path connecting n_1 and n_8 on the tree only exists if the antennas’ power transmission range is at least $d(s_8, n_1) = d(s_{10}, n_1) = 38$.

It is now clear that a 2-path between two nodes on a weighted graph with minimum power transmission range can be computed using a MST of such graph (see Figure 4(a)). Working with a MST is easier since a path between two nodes is unique. Follows the core of the algorithm to find a 2-path connecting two nodes of G_w with minimum range, taking advantage of a...
MST of G_w.

Algorithm: Solution Phase

In: T_w, a MST of G_w

Out: P, a 2-covered path and $MR_{S,G_w}(n_i, n_j)$

1. Use the algorithm DFS [5] to find a path P on T_w between n_i and n_j.
2. $MR_{S,G_w}(n_i, n_j) \leftarrow \max\{w(e) : \forall e \in P\}$.

In Figure 4(b) there is an example of a path on a MST connecting nodes n_1 and n_8 with minimum power transmission range. If all the antennas have range $r = \max\{31, 32, 28, 38\} = 38$, the path is 2-covered with minimum power transmission range. The largest range is the one needed to 2-cover n_1. It is given by the distance between n_1 and s_8 (or s_{16}), such distance is exactly $MR_{S,G_w}(n_1, n_8)$.

Theorem 4 Given a set S of n antennas, let n_i and n_j be two nodes of graph G_w and $T_w = (N, B)$ a MST of G_w. Then a 2-covered path between n_i and n_j on G_w with range $MR_{S,G_w}(n_i, n_j)$ can be computed on T_w in $O(|B|)$ time.

3 Concluding Remarks

The concept of 2-covering was introduced in this paper, as well as a related problem: calculating the minimum power transmission range to ensure the existence of a 2-covered path between two nodes of a graph. Given a set S of n antennas, the solution to this problem is divided in two phases. In the first phase, graph $G = (N, E)$ is converted into a weighted graph using a $O(|E| \times n)$, $|E| > \log n$, time algorithm. In the second phase, a 2-path between two nodes of G is found, as well as the minimum power transmission range of S to guarantee the existence of such path. This last algorithm is linear on the number of edges of a minimum spanning tree of the weighted graph.

References

