Bibliography

  • José Cáceres, Carmen Hernando, Mercé Mora, Ignacio M. Pelayo, M. Luz Puertas, Carlos Seara y David R.Wood. "On the metric dimension of cartesian products of graphs". SIAM J. Discrete Math., Vol. 21(2): 423-441, 2007.
  • Francisco Javier Ceballos, "JAVA 2. Interfaces gráficas y Aplicaciones", RA-MA, 2006.
  • Francisco Javier Ceballos, "JAVA 2. Leguaje y Aplicaciones", RA-MA, 2007.
  • G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann. "Resolvability in graphs and the metric dimension of a graph". Discrete Appl. Math., 105(1-3): 104-107, 2000.
  • G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann. "Resolvability in graphs and the metric dimension of a graph". Discrete Appl. Math., 105(1-3): 99-113, 2000.
  • G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann. "Resolvability in graphs and the metric dimension of a graph". Discrete Appl. Math., 105(1-3): 110-113, 2000.
  • Gary Chartrand y Ping Zhang. "The theory and applications of resolvability in graphs". A survey. Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing, vol. 160 of Congr. Numer.: 47-68, 2003.
  • Gary Chartrand, Linda Eroh, Mark A. Johnson, Ortrud R. Oellermann. "Resolvability in graphs and the metric dimension of a graph". 2000
  • G. Chartrand y Ping Zhang, "Introduction to Graph Theory", Mc Graw-Hill, 2004.
  • Bruce Eckel, "Thinking in Java, 4th Edition", Prentice Hall, 2006.
  • X. Ferré Grau , M.I. Sánchez Segura M.I., "Desarrollo Orientado a Objetos con UML", 2001.
  • M.R. Garey, D.S. Johnson, Computers and Intractability: "A Guide to the Theory of NP-Completeness", Freeman, New York, 1979.
  • F. Harary, R.A. Melter, "On the metric dimension of a graph", Ars Combin. 2, 191-195. 1976
  • Hernando C., Mora M., Pelayo I.M., Seara C. y Wood D.R. "Grafos de orden máximo mínimo con diámetro y dimensión métrica fijados". Universidad Politécnica de Cataluña, (313 - 314). 2007
  • Carmen Hernando, Mercé Mora, Ignacio M. Pelayo, Carlos Seara y David R. Wood. "Extremal graph theory for metric dimension and diameter". SIAM J. Discrete Math., enviado. http://www.arxiv.org/math/0705.0938v1. 2007
  • Hernando, C.; Mora, M.; Pelayo, I.M.;Seara,C.; Wood, D. R.. Universidad Politécnica de Cataluña. "Grafos de orden máximo y mínimo con diámetro y dimensión métrica fijados". 2006
  • C. Hernando, M. Mora, P.J. Slater y D. R. Wood. "Dimensión Métrica Tolerante de un Grafo". A: "VI Jornadas de Matemática Discreta y Algorítmica". Ediciones i Publicaciones de la UdL, 2008, p. 395-400. 2008
  • S. Khuller, B. Raghavachari, and A. Rosenfeld. "Landmarks in graphs". Discrete Appl. Math., 70(3): 217-229, 1996.
  • C. Poisson, P. Zhang, "The dimension of unicyclic graphs", J. Combin. Math. Combin, Comput., accepted. 2002
  • P. J. Slater, "Leaves of trees", Congr. Numer. 14, 549-559. 1975
  • P.J. Slater, "Dominating and reference sets in a graph", J. Math. Phys. Sci. 22 445-455. 1988
  • Peter J. Slater. "Leaves of trees". Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, vol. 14 of Congressus Numerantium: 549-559, 1975.
  • S. V. Yushmanov. Estimates for the metric dimension of a graph in terms of the diameters and the number of vertices. Vestnik Moskow. Univ. Ser. I Mat. Mekh., 103: 68-70, 1987.